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tics∗

 

 
WANG Guan-jun (王冠军)1,2∗∗, WU Zhi-yong (吴志勇)1, YUN Hai-jiao (云海姣)1,2, and CUI Ming (崔明)1,2 

1. Department of Photoelectric Measurement and Control, Changchun Institute of Optics, Fine Mechanics and 

Physics, Chinese Academy of Sciences, Changchun 130033, China   

2. University of Chinese Academy of Sciences, Beijing 100049, China  

 

(Received 27 December 2015) 

©Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2016 

 

A novel no-reference (NR) image quality assessment (IQA) method is proposed for assessing image quality across 

multifarious distortion categories. The new method transforms distorted images into the shearlet domain using a 

non-subsample shearlet transform (NSST), and designs the image quality feature vector to describe images utilizing 

natural scenes statistical features: coefficient distribution, energy distribution and structural correlation (SC) across 

orientations and scales. The final image quality is achieved from distortion classification and regression models 

trained by a support vector machine (SVM). The experimental results on the LIVE2 IQA database indicate that the 

method can assess image quality effectively, and the extracted features are susceptive to the category and severity of 

distortion. Furthermore, our proposed method is database independent and has a higher correlation rate and lower 

root mean squared error (RMSE) with human perception than other high performance NR IQA methods.  
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Objective no-reference (NR) image quality assessment 

(IQA) has drawn extensive attention for the major advan-

tage of assessing image quality without any information 

of reference image. Nowadays, the NR IQA approaches 

can be classified into distortion-specific approaches[1-6] 

and general purpose approaches[7-12]. For distortion-

specific IQA approaches, knowing the type of distortion 

in advance makes it easier to assess image quality, but 

also seriously limits the application. General purpose 

approaches extract statistical features to predict image 

quality across multifarious distortion categories. Natural 

scene statistics approaches are the representative for their 

excellent performance. However, the natural scene statis-

tics methods generally pay more attention to the coeffi-

cients distribution and ignore the changes of energy and 

structure of coefficients across different orientations and 

scales. The performance of those methods remains to be 

improved.  

We propose a new NR IQA method combined with 

non-subsample shearlet transform (NSST) and natural 

scene statistics features in this paper. Introducing NSST 

into IQA could effectively represent distorted image 

features.    

For a distorted image, the high-frequency components 

are severely affected as distortion severity increases. To 

accentuate the changes in high-frequency components, the 

locally normalized luminance is performed on distorted 

images as follows. 
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where ˆ( , )I i j is the locally normalized luminance, 

1,2,i H∈ … and 1,2,j W∈ …

 
are the pixel indices of 

image with the size of H×W, μ and σ are the mean and local 

variance of the image, respectively, w={w(m,n)|m=−M,…M, 

n=−N,…N} is a two-dimensional Gaussian weighting 

function,
 
and in this paper, M=N=3. 

To extract image quality features, we transform the lo-

cally normalized images into shearlet domain using the 

NSST. The NSST is constructed by combining the non-

sampled Laplacian pyramid transform (NSLP) with dif-

ferent combinations of shearing filters (SFs)[13]. NSLP 
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actualizes multi-scale decomposition to produce a high-

frequency sub-image and a low-frequency sub-image at 

each level, and the NSLP is performed iteratively on the 

low-frequency component to capture the singular points 

of image. On the other hand, at each scale, 2l directional 

sub-images are obtained through actualizing multi-

directional decomposition with l stages using SFs on 

high-frequency sub-images. In this paper, the image is 

transformed into four scales and each scale owns eight 

orientation sub-images. 

In order to demonstrate the effects of local normalization, 

Fig.1 gives an example of local normalization of a nature 

image. Furthermore, the shearlet coefficient distributions are 

plotted in Fig.2. To ensure a fair comparison, the 

magnitudes of coefficients and probabilities are normalized. 

From Fig.1 and Fig.2, it is easy to find that the local 

normalization of luminance will make the effects of 

distortions more obvious. 

For NR IQA models, the reliability of the approach is 

as effective as the selection of features. Since different 

distortion categories significantly impact specific 

statistical regularities of natural scenes in different ways, 

we design an image quality feature vector utilizing 

 

   
(a1) Original image                  (a2) Original image 

  
(b1) Fast Rayleigh fading (FF)                    (b2) FF 

  
(c1) Gaussian blur  (Gblur)                     (c2) Gblur 

  
(d1) JP2K                                 (d2) JP2K 

  
 (e1) JPEG                                 (e2) JPEG 

  
(f1) White noise (WN)                          (f2) WN 

Fig.1 The local normalization of luminance: (a1)—(f1) 

The non-locally normalized images; (a2)—(f2) The 

locally normalized luminance images 
 

 
(a) Natural images 

 
(b) Locally normalized images 

Fig.2 Distributions of shearlet coefficients 
 

coefficient distribution, energy distribution and structural 

correlation (SC) across orientations and scales. Since the 

low-frequency components are less affected by 

distortions, we only extract features at fine scales, i.e., 

orientation index in the range of 17—32.  

The distributions of shearlet coefficients are characterized 

by very large peaks, heavy tails and asymmetry. Therefore, 

we select an asymmetric generalized Gaussian  distribution 

(AGGD) model to represent the coefficient distribution 

characteristics. The AGGD model is expressed as 
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where α is the shape parameter, βr and βl represent the 

right and left scale parameters, respectively, μ is the 

mode of the AGGD model, and Γ is the gamma function.  

In our method, the parameters (α, βr, βl, μ) at fine 

scales are used to design the features f1—f64 and they will 

be estimated using the moment-matching based on the 

approach proposed in Ref.[14].  

Since the cortical neurons of human are highly 

sensitive to energy in images, distortions will modify this 

energy distribution in unnatural ways[15]. To measure the 

energy distribution, we calculate the ratio of high 

frequency to low frequency components across different 

orientations and scales. The ratio l

k
R  is calculated as  
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where ( , )
l

k
C i j   is the coefficient of high-frequency sub-

images with scale index k and orientation index l, and 

CL(i, j) is the low-frequency coefficient. The energy 

distribution
 
at fine scales is used to design the features 

f65—f80.  

The NSST is highly direction-sensitive and can 

produce a set of orientation sub-images. To describe the 

structural differences across different orientations, we 

calculate the SC of orientation sub-images. Since the 

entropy indicates the information amount of images, we 

choose the sub-image with the largest entropy at each 

scale as the cardinal orientation to calculate SC. The SC 

is computed as 
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where σx and σy
 
are the standard variances of the cardinal 

and non-cardinal orientation sub-images, respectively, 

and σxy is the cross variance. C1 is a constant to prevent 

the denominator to be zero, C2 is also a constant, and 

C2=2C1. In our method, we extract the average of the SC 

at fine scales to construct the features f81—f82.  

To clarify the relationship between these statistical 

features and human perception across the five distortion 

categories, we plot the Spearman’s rank ordered 

correlation coefficient (SROCC) between these statistical 

features and the difference mean opinion score (DMOS) 

provided by LIVE2[16] database in Fig.3. From Fig.3, we 

observe that these statistical features have high 

correlation with human perception, so they are suitable to 

indicate image quality. 

To express image quality intuitively, a regression 

model is needed to map feature vectors to image quality 

scores. However, it is not practical to build a general 

regression model for each distortion category. Thus, we 

implement a two-stage framework of distortion 

identification and distortion-specific quality assessment. 

First, we train a probabilistic classifier using an SVM. In 

this stage, the probability of distortion identification is 

estimated. Second, a regression model is built for each 

distortion category using support vector regression 

(SVR), and the distortion-specific quality score is 

mapped from the feature space. Finally, we calculate the 

image quality score as the sum of distortion-specific 

quality scores weighted by corresponding distortion 

probabilities. 

 

 

Fig.3 The SROCC between DMOS and statistical 

features on the LIVE2 database  

 

In our method, the SVM and SVR are implemented 

utilizing the LIBSVM package[17] and the radial basis 

function kernel is selected for SVM and SVR.  

In this paper, a series of experiments are conducted on 

LIVE2 IQA database to test the performance of our 

proposed method. The database is divided into training 

and testing sets randomly. Note that the two sets are non-

overlapped. 80% of the original images and 

corresponding distorted images construct the training set 

which is used to train the distortion classification and 

regression models. The testing set consisting of the 

remained images is used to evaluate the performance of 

our IQA method. The splitting is randomly repeated for 

1 000 times to avoid that those experiments are regulated 

by particular training-testing sets. The median 

performance indices across the 1 000 iterations are 

chosen as the final results. SROCC, Pearson linear 

correlation coefficient (LCC) and root mean squared 

error (RMSE) between predicted image quality scores 

and DMOS scores are calculated for evaluating the 

performance of IQA method.  

We compare the performance of our proposed method 

with that of two FR methods (i.e., PSNR and SSIM[18]) 

and six NR IQA approaches (i.e., BIQI, DIIVINE, 

BLIINDS-II, BRISQUE, SHANIA and CurveletQA). 

The FR methods are only tested on the testing set for the 

reason that they need not training. Tabs.1—3 show the 

median experimental results and the superior results are 

listed in bold.  

From Tabs.1—3, we can observe that our proposed 

method is correlated highly with human subjective 

opinions, and it performs better than the FR IQA 

methods as well as other general purpose IQA methods. 

Remarkably, for each distortion type as well as all the 

distortion types, our proposed NR method could be used 

to assess image quality effectively. 
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Tab.1 Median SROCC across 1 000 iterations 

Model JP2K JPEG WN Gblur FF ALL

PSNR 0.864 0.879 0.941 0.783 0.878 0.869

SSIM 0.932 0.946 0.957 0.903 0.938 0.915

BIQI 0.842 0.792 0.954 0.915 0.775 0.798

DIIVINE 0.919 0.907 0.976 0.932 0.879 0.917

BLIINDS-II 0.931 0.928 0.947 0.904 0.883 0.917

BRISQUE 0.924 0.967 0.973 0.945 0.892 0.934

SHANIA 0.913 0.932 0.971 0.958 0.941 0.937

CurveletQA 0.937 0.909 0.979 0.961 0.896 0.930

Proposed 0.948 0.931 0.986 0.973 0.914 0.945

 

Tab.2 Median LCC across 1 000 iterations  

Model JP2K JPEG WN Gblur FF ALL

PSNR 0.879 0.842 0.958 0.774 0.882 0.867

SSIM 0.937 0.941 0.974 0.907 0.942 0.904

BIQI 0.836 0.742 0.974 0.903 0.726 0.754

DIIVINE 0.921 0.925 0.981 0.924 0.899 0.915

BLIINDS-II 0.923 0.938 0.962 0.894 0.887 0.912

BRISQUE 0.928 0.952 0.983 0.951 0.903 0.940

SHANIA 0.876 0.897 0.958 0.964 0.907 0.911

CurveletQA 0.946 0.914 0.974 0.958 0.907 0.930

Proposed 0.942 0.924 0.985 0.964 0.923 0.949

 

Tab.3 Median RMSE across 1 000 iterations  

Model JP2K JPEG WN Gblur FF ALL

PSNR 7.842 8.436 5.271 9.473 7.426 8.271

SSIM 5.695 6.115 4.729 4.768 4.475 5.742

BIQI 13.814 17.083 5.415 9.892 15.482 15.915

DIIVINE 8.570 10.217 5.914 8.594 9.671 10.138

BLIINDS-II 8.158 7.825 6.458 8.413 9.483 9.153

BRISQUE 8.058 9.453 3.502 7.871 9.842 9.043

SHANIA 8.914 10.110 6.518 7.612 10.043 8.716

CurveletQA 7.585 9.078 3.718 5.472 8.628 8.476

Proposed 6.846 8.713 3.471 3.783 7.320 7.657

 

In order to demonstrate the database independence of 

our approach, we train the method on LIVE IQA 

database and test it on TID2008 database[19]. The SROCC 

results are listed in Tab.4. The results show that our 

proposed method is more database independent than the 

high performance NR IQA methods of CurveletQA, 

SHANIA and BRISQUE. 

 

Tab.4 SROCC obtained by training on the LIVE2 

database and  testing on the TID2008 database  

Model JP2K JPEG WN Gblur ALL 

BRISQUE 0.768 0.872 0.813 0.863 0.852 

CurveletQA 0.569 0.864 0.848 0.852 0.867 

SHANIA 0.843 0.852 0.803 0.833 0.849 

Proposed 0.866 0.852 0.896 0.878 0.874 

Furthermore, we analyze the capability of identifying 

distortion types. The median classification accuracies for 

all distortion types across 1 000 iterations are shown in 

Tab.5. We note that our proposed method could 

effectively identify distortion category, especially for 

WN distortion. Fig.4 shows the confusion matrix for 

each distortion type, where the horizontal and vertical 

axes represent the true distortion type and predicted 

distortion type, respectively. The numerical values 

represent the mean confused probabilities across 1 000 

iterations. However, different distortion categories 

sometimes present similar effects, so the actual 

classification accuracy will be impacted by the 

performance of IQA algorithm inevitably[9].  

 

Tab.5 Median accuracy across 1 000 iterations 

Model Accuracy Model Accuracy 

JP2K 73.36% Gblur 78.15% 

JPEG 76.12% FF 57.18% 

WN 99.48% ALL 76.29% 

 

 

Fig.4 Mean confusion matrix across 1 000 iterations 

 

In this paper, we present a novel NR IQA method to 

assess image quality across multifarious distortion 

categories. The method introduces locally normalized 

luminance and NSST into image quality assessment and 

extracts a series of natural scenes statistical features for 

training classification and regression models. We 

demonstrate that the method can effectively assess image 

quality and performs better than the most popular FR 

IQA method of SSIM and other high performance NR 

IQA methods, including BIQI, DIIVINE, BLIINDS-II, 

BRISQUE, SHANIA and CurveletQA. In addition, we 

develop this work from a set of statistical features of 

nature scenes rather than specific distortion features, 

making our method easily extended beyond the set of 

distortions considered in this paper. 
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